skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "O'Brien, Declan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract During active geomagnetic periods both electrons and protons in the outer radiation belt have been frequently observed to penetrate to lowL(<4). Previous studies have demonstrated systematic differences in the deep penetration of the two species of particles, most notably that the penetration of protons is observed less frequently than for electrons of the same energies. A recent study by Mei et al. (2023,https://doi.org/10.1029/2022GL101921) showed that the time‐varying convection electric field contributes to the deeper penetration of low‐energy electrons and that a radial diffusion‐convection model can be used to reproduce the storm‐time penetration of lower‐energy electrons to lowerL. In this study, we analyze and provide physical explanations for the different behaviors of electrons and protons in terms of their penetration depth to lowL. A radial diffusion‐convection model is applied for the two species with coefficients that are adjusted according to the mass‐dependent relativistic effects on electron and proton drift velocity, and the different loss mechanisms included for each species. Electromagnetic ion cyclotron (EMIC) wave scattering losses for 100s of keV protons during a specific event are modeled and quantified; the results suggest that EMIC waves interacting with protons of lower energies than electrons can contribute to prevent the inward transport of the protons. 
    more » « less
  2. Abstract Following the largest magnetic storm in 20 years (10 May 2024), REPTile‐2 on NASA's CIRBE satellite identified two new radiation belts containing 1.3–5 MeV electrons aroundL = 2.5–3.5 and 6.8–20 MeV protons aroundL = 2. The region aroundL = 2.5–3.5 is usually devoid of relativistic electrons due to wave‐particle interactions that scatter them into the atmosphere. However, these 1.3–5 MeV electrons in this new belt seemed unaffected until a magnetic storm on 28 June 2024, perturbed the region. The long‐lasting nature of this new electron belt has physical implications for the dependence of electron wave‐particle interactions on energy, plasma density, and magnetic field strength. The enhancement of protons aroundL = 2 exceeded an order of magnitude between 6.8 and 15 MeV forming a distinct new proton belt that appears even more stable. CIRBE, after a year of successful operation, malfunctioned 25 days before the super storm but returned to functionality 1 month after the storm, enabling these discoveries. 
    more » « less